Основные статистические параметры большой и малой выборочной совокупности и их характеристика. Статистика малых выборок (small-sample statistics) Пример реальных данных

При контроле качества товаров в экономических исследованиях эксперимент может проводиться на основе малой выборки.

Под малой выборкой понимается несплошное статистическое обследование, при котором выборочная совокупность образуется из сравнительно небольшого числа единиц генеральной совокупности. Объем малой выборки обычно не превышает 30 единиц и может доходить до 4 - 5 единиц.

Средняя ошибка малой выборки вычисляется по формуле:

,

где
- дисперсия малой выборки.

При определении дисперсии число степеней свободы равно n-1:

.

Предельная ошибка малой выборки
определяется по формуле

При этом значение коэффициента доверия t зависит не только от заданной доверительной вероятности, но и от численности единиц выборки n. Для отдельных значений t и n доверительная вероятность малой выборки определяется по специальным таблицам Стьюдента (Табл. 9.1.), в которых даны распределения стандартизированных отклонений:

.

Поскольку при проведении малой выборки в качестве доверительной вероятности практически принимается значение 0,59 или 0,99, то для определения предельной ошибки малой выборки
используются следующие показания распределения Стьюдента:

Способы распространения характеристик выборки на генеральную совокупность.

Выборочный метод чаще всего применяется для получения характеристик генеральной совокупности по соответствующим показателям выборки. В зависимости от целей исследований это осуществляется или прямым пересчётом показателей выборки для генеральной совокупности, или посредством расчёта поправочных коэффициентов.

Способ прямого пересчёта. Он состоит в том, что показатели выборочной долиили среднейраспространяется на генеральную совокупность с учётом ошибки выборки.

Так, в торговле определяется количество поступивших в партии товара нестандартных изделий. Для этого (с учётом принятой степени вероятности) показатели доли нестандартных изделий в выборке умножаются на численность изделий во всей партии товара.

Способ поправочных коэффициентов . Применяется в случаях, когда целью выборочного метода является уточнение результатов сплошного учета.

В статистической практике этот способ используется при уточнении данных ежегодных переписей скота, находящегося у населения. Для этого после обобщения данных сплошного учета практикуется 10%-ное выборочное обследование с определением так называемого “процента недоучета”.

Способы отбора единиц из генеральной совокупности.

В статистике применяются различные способы формирования выборочных совокупностей, что обусловливается задачами исследования и зависит от специфики объекта изучения.

Основным условием проведения выборочного обследования является предупреждение возникновения систематических ошибок, возникающих вследствие нарушения принципа равных возможностей попадания в выборку каждой единицы генеральной совокупности. Предупреждение систематических ошибок достигается в результате применения научно обоснованных способов формирования выборочной совокупности.

Существуют следующие способы отбора единиц из генеральной совокупности:

1) индивидуальный отбор - в выборку отбираются отдельные единицы;

2) групповой отбор - в выборку попадают качественно однородные группы или серии изучаемых единиц;

3) комбинированный отбор - это комбинация индивидуального и группового отбора.

Способы отбора определяются правилами формирования выборочной совокупности.

Выборка может быть:

Собственно-случайная;

Механическая;

Типическая;

Серийная;

Комбинированная.

Собственно-случайная выборка состоит в том, что выборочная совокупность образуется в результате случайного (непреднамеренного) отбора отдельных единиц из генеральной совокупности. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки.

Доля выборки есть отношение числа единиц выборочной совокупности n к численности единиц генеральной совокупности N, т.е.

.

Так, при 5%-ной выборке из партии товара в 2 000 ед. численность выборки n составляет 100 ед. (5*2000:100), а при 20%-ной выборке она составит 400 ед. (20*2000:100) и т.д.

Механическая выборка состоит в том, что отбор единиц в выборочную совокупность производится из генеральной совокупности, разбитой на равные интервалы (группы). При этом размер интервала в генеральной совокупности равен обратной величине доли выборки.

Так, при 2%-ной выборке отбирается каждая 50-я единица (1:0,02), при 5%-ной выборке - каждая 20-я единица (1:0,05) и т.д.

Таким образом, в соответствии с принятой долей отбора, генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой группы в выборку отбирается лишь одна единица.

Важной особенностью механической выборки является то, что формирование выборочной совокупности можно осуществить, не прибегая к составлению списков. На практике часто используют тот порядок, в котором фактически размещаются единицы генеральной совокупности. Например, последовательность выхода готовых изделий с конвейера или поточной линии, порядок размещения единиц партии товара при хранении, транспортировке, реализации и т.д.

Типическая выборка. При типической выборке генеральная совокупность вначале расчленяется на однородные типические группы. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

Типическая выборка обычно применяется при изучении сложных статистических совокупностей. Например, при выборочном обследовании производительности труда работников торговли, состоящих из отдельных групп по квалификации.

Важной особенностью типической выборки является то, что она дает более точные результаты по сравнению с другими способами отбора единиц в выборочную совокупность.

Для определения средней ошибки типической выборки используются формулы:

повторный отбор

,

бесповторный отбор

,

Дисперсия определяется по следующим формулам:

,

При одноступенчатой выборке каждая отобранная единица сразу же подвергается изучению по заданному признаку. Так обстоит дело при собственно-случайной и серийной выборке.

При многоступенчатой выборке производят подбор из генеральной совокупности отдельных групп, а из групп выбираются отдельные единицы. Так производится типическая выборка с механическим способом отбора единиц в выборочную совокупность.

Комбинированная выборка может быть двухступенчатой. При этом генеральная совокупность сначала разбивается на группы. Затем производят отбор групп, а внутри последних осуществляется отбор отдельных единиц.

При контроле качества товаров в экономических исследованиях эксперимент может проводиться на основе малой выборки.

Под малой выборкой понимается несплошное статистическое обследование, при котором выборочная совокупность образуется из сравнительно небольшого числа единиц генеральной совокупности. Объем малой выборки обычно не превышает 30 единиц и может доходить до 4-5 единиц.

В торговле к минимальному объему выборки прибегают, когда большая выборка или невозможна, или нецелесообразна (например, если проведение исследования связано с порчей или уничтожением обследуемых образцов).

Величина ошибки малой выборки определяется по формулам, отличным от формул выборочного наблюдения со сравнительно большим объемом выборки (n>100). Средняя ошибка малой выборкиu(мю)м.в. вычисляется по формуле:

uм.в = корень(Gквадрат(м.в.) . /n),

где Gквадрат(м.в.) – дисперсия малой выборки.*это сигма*

По формуле (там номер стоит) имеем:

G0квадрат=Gквадрат *n/ (n-1).

Но поскольку при мало выборке n/(n-1) имеет существенное значение, то вычисление дисперсии малой выборки производится с учетом так называемого числа степеней свободы. Под числом степеней свободы понимается количество вариантов, которые могут принимать произвольные значения, не меняя величины средней. При определении дисперсииGквадрат число степеней свободы равноn-1:

Gквадрат(м.в.) = сумма (xi–x(cволнистой чертой))/(n-1).

Предельная ошибка малой выборки Дм.в.(знак- треугольник) определяется по формуле:

При этом значение коэффициента доверия tзависит не только от заданной доверительной вероятности, но и от численности единиц выборкиn. Для отдельных значенийtиnдоверительная вероятность малой выборки определяется по специальным таблицам Стьюдента, в которых даны распределения стандартизованных отклонений:

t= (x(cволнистой чертой) –x(с чертой)) /Gм.в.

Таблицы Стьюдента приводятся в учебниках по математической статистике. Вот некоторые значения из этих таблиц, характеризующие вероятность того, что предельная ошибка малой выборки не превзойдет t-кратную среднюю ошибку:

St=P[(x(cволнистой чертой) –x(с чертой)

По мере увеличения объема выборки распределение Стьюдента приближается к нормальному, и при 20 оно уже мало отличается от нормального распределения.

При проведении малых выборочных обследований важно иметь в виду, что чем меньше объем выборки, тем больше различие между распределением Стьюдента и нормальным распределением. При минимальном объеме выборки (n=4) это различие весьма существенно, что указывает на уменьшение точности результатов малой выборки.

Посредством малой выборки в торговле решается ряд практических задач, прежде всего установление предела, в котором находится генеральная средняя изучаемого признака.

Поскольку при проведении малой выборки в качестве доверительной вероятности практически принимается значение 0,95 или 0,99, то для определения предельной ошибки выборки Дм.в. используются следующие показания распределения Стьюдента.

На практике довольно часто приходится иметь дело с выборками весьма малого объема, численности которых значительно меньше двадцати - тридцати. Такие выборки в статистике получили название малых выборок. Необходимость специального рассмотрения малых выборок вызвана тем, что разобранные выше методы точечной и интервальной оценки выборочных характеристик предполагают достаточно большую численность выборок.

Понятие о малых выборках. Распределение Стьюдента

Выборочная средняя и, соответственно, ее ошибка распределены нормально, а поправка на величину смещения выборочной дисперсии очень близка к единице и не имеет практического значения. Ошибка выборки в этих условиях очень редко превышает величину. Иное дело при небольшом объеме выборки. При малых выборках выборочная дисперсия оказывается значительно смещенной. Поэтому применять функцию нормального распределения для вероятностных выводов о возможной величине ошибки было бы неправомерно. При малом объеме выборки всегда нужно пользоваться несмещенной оценкой дисперсии:

Следовательно, для получения несмещенной оценки дисперсии по данным малой выборки сумму квадратов отклонений нужно делить на величину. Эта величина называется числом степеней свободы вариации. В дальнейшем для краткости число степеней свободы вариации будет обозначаться греческой буквой (ню).

Проблема оценки выборочных характеристик на основе малых выборок впервые была исследована английским математиком статистиком В. Госсетом, публиковавшим свои работы под псевдонимов Стьюдент (1908 г.).

Исходя из предложения о нормальности распределения признака в генеральной совокупности и рассматривая вместо абсолютных отклонений их отношения к независимому стандарту, Стьюдент нашел распределение, которое зависит только от численности выборки. Позже (1925 г.) Р. Фишер дал более строгое доказательство этого распределения, которое получило название распределение Стьюдента.

Величина Стьюдента выражается как следующее отношение:

В числителе выражения фигурирует переменная величина, которая отражает возможные значения отклонений выборочных средних от генеральной средней. Величина распределена нормально с центром, равным нулю, и дисперсией, равной.

Следует особо подчеркнуть, что знаменатель выражения нельзя рассматривать как среднюю ошибку переменной. Величина рассматривается здесь как независимо распределенная от числителя переменная. означает среднее квадратическое (стандартное) отклонение данной выборки и не является оценкой генеральной совокупности, так как распределение Стьюдента не зависит ни от одного параметра генеральной совокупности. определяется по данным выборки как

Распределения независимы друг от друга. Только при этом условии и для выборок из нормальных совокупностей имеет место распределение Стьюдента.

Основное преимущество распределения Стьюдента состоит в том, что оно не зависит от параметров генеральной совокупности и имеет дело только с величинами, полученными непосредственно из выборки.

Дифференциальный закон распределение Стьюдента (плотность вероятности) имеет вид:

где объем выборки;

величина соответствующая максимальной ординате кривой распределения при t = 0.

Соответственно функция распределения Стьюдента выражается:

Иначе говоря,

где t ф стандартизированная (нормированная) разность, вычисляемая по результатам малой выборки.

Величины Г() и Г() являются гамма- функциями. Для некоторого числа гамма - функция выражается несобственным интегралом:

В малых выборках всегда целое положительное число (объем выборки).

В этом случае гамма - функция всегда имеет конечную величину и выражается через факториалы:

следовательно:

При вычислении гамма - функции полезно знать следующие свойства:

1) При есть;

  • 3) Например,

Используя это свойство, легко можно вычислить значения Г() и Г() в выражении плотности распределения;

4) Функция достигает минимума при дробном значении

Рис 3.1

Общий вид гамма - функции показан на рис. 3.1.

Из свойств распределения Стьюдента, рассматриваемых обычно в курсе теории вероятностей, обращается внимание на следующее:

1) Распределение Стьюдента замечательно тем, что зависит только от одного параметра - объема выборки и не зависит от средней и дисперсии генеральной совокупности (в отличие от нормального распределения, зависящего о этих двух параметров).

  • 2) Распределение Стьюдента точно для любого объема выборки следовательно, и для малых выборок, что позволяет делать вероятностные выводы по малому числу наблюдений.
  • 3) При увеличении объема выборки величина приближается к значению, а распределение Стьюдента приближается к нормальному. При распределение Стьюдента становится нормальным. Практически для нормального приближения считается достаточным.

Рис 3.2

На рис. 3.2 показаны соотношения между распределением Стьюдента и нормальным распределением.

Как видно из рис. 3.2, под концами кривой распределения Стьюдента, например или, расположена значительно большая часть площади, чем под кривой нормального распределения при тех же значениях. Это значит, что при малом объеме выборок вероятность допущения больших ошибок заметно увеличивается. Из рисунка видно, что при значениях нормированного отклонения, превышающих по абсолютному значению, площадь под кривой распределения Стьюдента гораздо больше, чем под кривой нормального распределения.

О величине расхождений между значениями функции распределения Стьюдента в зависимости от объема выборки и значениями нормальной функции распределения можно судить по данным табл. 3.2, где приведены значения площадей под кривой распределения от при разной численности выборки при.

Таблица 3.1

Значение нормальной функции распределения

Таблица 3.2

Значения вероятностей при разном объеме выборки

Нормированное отклонение

Значение при малых выборках с численностями

Значение при больших выборках

Из таблицы 3.2. видно, что с увеличением объема выборки малая выборка быстро приближается к нормальной. В то же время при очень маленькой численности выборки расхождения между значениями при данном значении весьма значительны.

Исследованиями было установлено, что распределение Стьюдента практически применимо не только в случае нормального распределения признака в генеральной совокупности. Оказалось, что оно происходит к практически приемлемым выводам и тогда, когда распределения признака в генеральной совокупности не является нормальным, а лишь симметрично и даже несколько асимметрично, но объем выборки не слишком мал.

Значения функции распределения Стьюдента затабулированы при различных значениях Поэтому при оценке выборочных характеристик пользуются готовыми таблицами:

Таблица 3.3

Таблица значений функции

Значения функции распределения Стьюдента могут быть использованы различными способами в зависимости от характера решаемых задач при определении вероятности отклонения выборочной от генеральной. Наиболее часто используются:

1) Определение вероятности того, что разность между выборочной средней и генеральной средней окажется меньше на некоторую заданную величину. В нормированных отклонениях задача сводится к определению вероятности того, что окажется меньше значения, задаваемого условиями задачи, т.е. к нахождению значения

Рис 3.3

Это есть вероятность больших отрицательных отклонений, которая на рис. 3.3 соответствует заштрихованной площади.

2) Определение вероятности того, что разность между выборочной средней и средней генеральной окажется не менее некоторой заданной величины, иначе говоря, следует найти

Рис 3.4

Это есть вероятность больших положительных отклонений, которая показана в виде заштрихованной площади на рис. 3.4. эту вероятность легко найти, используя таблицы.

3) Определение вероятности того, что нормированное отклонение по абсолютной величине окажется менее, выражается

Это есть вероятность меньших по абсолютной величине отклонений. Эта вероятность может быть определена с использованием таблиц. Поскольку на практике чаще всего приходится определять эту вероятность, составленной специальной таблицы значения (табл. 3.3).

Графическая иллюстрация вероятности меньших по абсолютной величине отклонений дана на рис. 3.5

Рис 3.5

4) Определение вероятности того, что ошибка выборки по абсолютной величине окажется не менее некоторой заданной величины. В нормированных единицах вероятность того, что по абсолютной величине окажется не менее, выразится

Это есть вероятность больших по абсолютной величине отклонений. Графически она иллюстрируется на рис. 3.6.

Рис 3.6

Для нахождения вероятности больших по абсолютной величине отклонений имеются специальные таблицы (приложение 3). Эту вероятность легко можно вычислить, также используя таблицы.

Распространение выборочных характеристик на генеральную совокупность, основанное на действии закона больших чисел, предполагает достаточно большой объем выборки. Однако в практике статистического исследования часто приходится сталкиваться с невозможностью по тем или иным причинам увеличить численность единиц выборки, имеющей небольшой объем. Это касается изучения деятельности предприятий, учебных заведений, коммерческих банков и т.д., число которых в регионах, как правило, незначительно, а иногда составляет всего 5-10 единиц.

В том случае когда выборочная совокупность состоит из небольшого числа единиц, менее 30, выборку называют малой. В этом случае для расчета ошибки выборки нельзя пользоваться теоремой Ляпунова, так как на выборочную среднюю значительное влияние оказывает величина каждой из случайно отобранных единиц и ее распределение может существенно отличаться от нормального.

В 1908 году В.С. Госсет доказал, что оценка расхождения между выборочной средней малой выборки и генеральной средней имеет особый закон распределения (см. главу 4). Занимаясь проблемой вероятностной оценки выборочной средней при небольшом числе наблюдений, он показал, что в этом случае нужно рассматривать распределение не самих выборочных средних, а величин их отклонений от средней исходной совокупности. В этом случае заключения могут быть достаточно надежными.

Открытие Стьюдента называют теорией малых выборок.

При оценке результатов малой выборки величина генеральной дисперсии в расчетах не используется. В малых выборках для расчета средней ошибки выборки применяют «исправленную» выборочную дисперсию:

т.е. в отличие от больших выборок в знаменателе вместо п стоит (и - 1). Расчет средней ошибки выборки для малой выборки приведен в табл. 5.7.

Таблица 5.7

Расчет средней ошибки малой выборки

Предельная ошибка малой выборки равна: где t - коэффициент доверия.

Величина t иначе связана с вероятной оценкой, чем при большой выборке. В соответствии с распределением Стьюдента вероятная оценка зависит как от величины t, так и от объема выборки я в случае, если предельная ошибка не превысит г-кратную среднюю ошибку в малых выборках. Однако в большей степени она зависит от числа отобранных единиц.

В.С. Госсет составил таблицу распределения вероятностей в малых выборках, соответствующих данным значениям коэффициента доверия t и разным объемам малой выборки и, выдержка из нее приведена в табл. 5.8.

Таблица 5.8

Фрагмент таблицы вероятностей Стьюдента (вероятности умножены на 1000)

Данные табл. 5.8 свидетельствуют о том, что при неограниченном возрастании объема выборки (я = °°) распределение Стьюдента стремится к нормальному закону распределения, а при я = 20 уже мало от него отличается.

Таблица распределения Стьюдента часто приводится в другой форме, более удобной для практического применения (табл. 5.9).

Таблица 5.9

Некоторые значения (-распределения Стьюдента

Число степеней свободы

для одностороннего интервала

для двустороннего интервала

Р= 0,99

Рассмотрим, как пользоваться таблицей ^распределения. Каждому фиксированному значению п вычисляют число степеней свободы k , где k = п - 1. Для каждого значения степени свободы указана предельная величина t p (t 095 или t 0 99), которая с данной вероятностью Р не будет превышена в силу случайных колебаний результатов выборки. На основе величины t p определяются границы доверительного

интервала

В качестве доверительной вероятности при двусторонней проверке, как правило, используют Р = 0,95 или Р = 0,99, что не исключает выбора и других значений вероятностей. Значение вероятности выбирается исходя из конкретных требований задач, для решения которых применяется малая выборка.

Вероятность выхода значений генеральной средней за пределы доверительного интервала равна q, где q = 1 - р. Это значение весьма мало. Соответственно для рассмотренных вероятностей р оно составляет 0,05 и 0,01.

Малые выборки имеют широкое распространение в технических науках, в биологии, но применять их в статистических исследованиях нужно с большой осторожностью, только при соответствующем теоретическом и практическом обследовании. Использовать малую выборку можно только в том случае, если распределение признака в генеральной совокупности является нормальным или близким к нему, а средняя величина вычисляется по выборочным данным, полученным в результате независимых наблюдений. Кроме того, следует иметь в виду, что точность результатов выборки малого объема ниже, чем при большой выборке.

При контроле качества товаров в экономических исследованиях эксперимент может проводиться на основе малой выборки.Под малой выборкой понимается несплошное статистическое обследование,при котором выборочная совокупность образуется из сравнительно небольшого числа единиц генеральной совокупности. Объем малой выборки обычно не превышает 30 единиц и может доходить до 4 - 5 единиц.Средняя ошибка малой выборки вычисляется по формуле:,где - дисперсия малой выборки.При определении дисперсии число степеней свободы равно n-1: . Предельная ошибка малой выборки определяется по формулеПри этом значение коэффициента доверия t зависит не только от заданной доверительной вероятности, но и от численности единиц выборки n. Для отдельных значений t и n доверительная вероятность малой выборки определяется по специальным таблицам Стьюдента (Табл. 9.1.), в которых даны распределения стандартизированных отклонений:.Поскольку при проведении малой выборки в качестве доверительной вероятности практически принимается значение 0,59 или 0,99, то для определения предельной ошибки малой выборки используются следующие показания распределения Стьюдента:

Способы распространения характеристик выборки на генеральную совокупность. Выборочный метод чаще всего применяется для получения характеристик генеральной совокупности по соответствующим показателям выборки. В зависимости от целей исследований это осуществляется или прямым пересчётом показателей выборки для генеральной совокупности, или посредством расчёта поправочных коэффициентов. Способ прямого пересчёта. Он состоит в том, что показатели выборочной доли или средней распространяется на генеральную совокупность с учётом ошибки выборки.Так, в торговле определяется количество поступивших в партии товара нестандартных изделий. Для этого (с учётом принятой степени вероятности) показатели доли нестандартных изделий в выборке умножаются на численность изделий во всей партии товара. Способ поправочных коэффициентов . Применяется в случаях, когда целью выборочного метода является уточнение результатов сплошного учета.В статистической практике этот способ используется при уточнении данных ежегодных переписей скота, находящегося у населения. Для этого послеобобщения данных сплошного учета практикуется 10%-ное выборочное обследованиес определением так называемого “процента недоучета”. Способы отбора единиц из генеральной совокупности. В статистике применяются различные способы формирования выборочных совокупностей, что обусловливается задачами исследования и зависит от специфики объекта изучения.Основным условием проведения выборочного обследования является предупреждение возникновения систематических ошибок, возникающих вследствие нарушения принципа равных возможностей попадания в выборку каждой единицы генеральной совокупности. Предупреждение систематических ошибок достигается в результате применения научно обоснованных способов формирования выборочной совокупности. Существуют следующие способы отбора единиц из генеральной совокупности:1) индивидуальный отбор - в выборку отбираются отдельные единицы;2) групповой отбор - в выборку попадают качественно однородные группы или серии изучаемых единиц;3) комбинированный отбор - это комбинация индивидуального и группового отбора. Способы отбора определяются правилами формирования выборочной совокупности.Выборка может быть:- собственно-случайная;- механическая;- типическая;- серийная;- комбинированная. Собственно-случайная выборка состоит в том, что выборочная совокупность образуется в результате случайного (непреднамеренного) отбора отдельных единиц из генеральной совокупности. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки. Доля выборки есть отношение числа единиц выборочной совокупности n к численности единиц генеральной совокупности N, т.е..Так, при 5%-ной выборке из партии товара в 2 000 ед. численность выборки n составляет 100 ед. (5*2000:100), а при 20%-ной выборке она составит 400 ед. (20*2000:100) и т.д. Механическая выборка состоит в том, что отбор единиц в выборочную совокупность производится из генеральной совокупности, разбитой на равные интервалы (группы). При этом размер интервала в генеральной совокупности равен обратной величине доли выборки.Так, при 2%-ной выборке отбирается каждая 50-я единица (1:0,02), при 5%-ной выборке - каждая 20-я единица (1:0,05) и т.д.Таким образом, в соответствии с принятой долей отбора, генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой группы в выборку отбирается лишь одна единица.Важной особенностью механической выборки является то, что формирование выборочной совокупности можно осуществить, не прибегая к составлению списков. На практике часто используют тот порядок, в котором фактически размещаются единицы генеральной совокупности. Например, последовательность выхода готовых изделий с конвейера или поточной линии, порядок размещения единиц партии товара при хранении, транспортировке, реализации и т.д. Типическая выборка. При типической выборке генеральная совокупность вначале расчленяется на однородные типические группы. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.Типическая выборка обычно применяется при изучении сложных статистических совокупностей. Например, при выборочном обследовании производительности труда работников торговли, состоящих из отдельных групп по квалификации.Важной особенностью типической выборки является то, что она дает более точные результаты по сравнению с другими способами отбора единиц в выборочную совокупность.Для определения средней ошибки типической выборки используются формулы: повторный отбор , бесповторный отбор , Дисперсия определяется по следующим формулам: , При одноступенчатой выборке каждая отобранная единица сразу же подвергается изучению по заданному признаку. Так обстоит дело при собственно-случайной и серийной выборке.При многоступенчатой выборке производят подбор из генеральной совокупности отдельных групп, а из групп выбираются отдельные единицы. Так производится типическая выборка с механическим способом отбора единиц в выборочную совокупность. Комбинированная выборка может быть двухступенчатой. При этом генеральная совокупность сначала разбивается на группы. Затем производят отбор групп, а внутри последних осуществляется отбор отдельных единиц.