Как решать алгебраические дроби? Теория и практика. Правила алгебраической дроби Какое другое название имеет алгебраическая дробь

В этой статье мы подробно остановимся на сокращении алгебраических дробей . Сначала разберемся, что понимают под термином «сокращение алгебраической дроби», и выясним, всегда ли алгебраическая дробь сократима. Дальше приведем правило, позволяющее проводить это преобразование. Наконец, рассмотрим решения характерных примеров, которые позволят уяснить все тонкости процесса.

Навигация по странице.

Что значит сократить алгебраическую дробь?

Изучая , мы говорили про их сокращение. мы назвали деление ее числителя и знаменателя на общий множитель. Например, обыкновенную дробь 30/54 можно сократить на 6 (то есть, разделить на 6 ее числитель и знаменатель), что приведет нас к дроби 5/9 .

Под сокращением алгебраической дроби понимают аналогичное действие. Сократить алгебраическую дробь – это значит разделить ее числитель и знаменатель на общий множитель. Но если общим множителем числителя и знаменателя обыкновенной дроби может быть только число, то общим множителем числителя и знаменателя алгебраической дроби может быть многочлен , в частности, одночлен или число.

Например, алгебраическую дробь можно сократить на число 3 , что даст дробь . Также можно выполнить сокращение на переменную x , что приведет к выражению . Исходную алгебраическую дробь можно подвергнуть сокращению на одночлен 3·x , а также на любой из многочленов x+2·y , 3·x+6·y , x 2 +2·x·y или 3·x 2 +6·x·y .

Конечная цель сокращения алгебраической дроби состоит в получении дроби более простого вида, в лучшем случае – несократимой дроби.

Любая ли алгебраическая дробь подлежит сокращению?

Нам известно, что обыкновенные дроби подразделяются на . Несократимые дроби не имеют отличных от единицы общих множителей в числителе и знаменателе, следовательно, не подлежат сокращению.

Алгебраические дроби также могут иметь общие множители числителя и знаменателя, а могут и не иметь. При наличии общих множителей возможно сокращение алгебраической дроби. Если же общих множителей нет, то упрощение алгебраической дроби посредством ее сокращения невозможно.

В общем случае по внешнему виду алгебраической дроби достаточно сложно определить, возможно ли выполнить ее сокращение. Несомненно, в некоторых случаях общие множители числителя и знаменателя очевидны. Например, хорошо видно, что числитель и знаменатель алгебраической дроби имеют общий множитель 3 . Также несложно заметить, что алгебраическую дробь можно сократить на x , на y или сразу на x·y . Но намного чаще общего множителя числителя и знаменателя алгебраической дроби сразу не видно, а еще чаще – его просто нет. К примеру, дробь возможно сократить на x−1 , но этот общий множитель явно не присутствует в записи. А алгебраическую дробь сократить невозможно, так как ее числитель и знаменатель не имеют общих множителей.

Вообще, вопрос о сократимости алгебраической дроби очень непростой. И порой проще решить задачу, работая с алгебраической дробью в исходном виде, чем выяснить, можно ли эту дробь предварительно сократить. Но все же существуют преобразования, которые в некоторых случаях позволяют с относительно небольшими усилиями найти общие множители числителя и знаменателя, если таковые имеются, либо сделать вывод о несократимости исходной алгебраической дроби. Эта информация будет раскрыта в следующем пункте.

Правило сокращения алгебраических дробей

Информация предыдущих пунктов позволяет естественным образом воспринять следующее правило сокращения алгебраических дробей , которое состоит из двух шагов:

  • сначала находятся общие множители числителя и знаменателя исходной дроби;
  • если таковые имеются, то проводится сокращение на эти множители.

Указанные шаги озвученного правила нуждаются в разъяснении.

Самый удобный способ отыскания общих заключается в разложении на множители многочленов , находящихся в числителе и знаменателе исходной алгебраической дроби. При этом сразу становятся видны общие множители числителя и знаменателя, либо становится видно, что общих множителей нет.

Если общих множителей нет, то можно делать вывод о несократимости алгебраической дроби. Если же общие множители обнаружены, то на втором шаге они сокращаются. В результате получается новая дробь более простого вида.

В основе правила сокращения алгебраических дробей лежит основное свойство алгебраической дроби , которое выражается равенством , где a , b и c – некоторые многочлены, причем b и c – ненулевые. На первом шаге исходная алгебраическая дробь приводится к виду , из которого становится виден общий множитель c , а на втором шаге выполняется сокращение – переход к дроби .

Переходим к решению примеров с использованием данного правила. На них мы и разберем все возможные нюансы, возникающие при разложении числителя и знаменателя алгебраической дроби на множители и последующем сокращении.

Характерные примеры

Для начала нужно сказать про сокращение алгебраических дробей, числитель и знаменатель которых одинаковые. Такие дроби тождественно равны единице на всей ОДЗ входящих в нее переменных, например,
и т.п.

Теперь не помешает вспомнить, как выполняется сокращение обыкновенных дробей – ведь они являются частным случаем алгебраических дробей. Натуральные числа в числителе и знаменателе обыкновенной дроби , после чего общие множители сокращаются (при их наличии). Например, . Произведение одинаковых простых множителей можно записывать в виде степеней, а при сокращении пользоваться . В этом случае решение выглядело бы так: , здесь мы числитель и знаменатель разделили на общий множитель 2 2 ·3 . Или для большей наглядности на основании свойств умножения и деления решение представляют в виде .

По абсолютно аналогичным принципам проводится сокращение алгебраических дробей, в числителе и знаменателе которых находятся одночлены с целыми коэффициентами.

Пример.

Сократите алгебраическую дробь .

Решение.

Можно представить числитель и знаменатель исходной алгебраической дроби в виде произведения простых множителей и переменных, после чего провести сокращение:

Но более рационально решение записать в виде выражения со степенями:

Ответ:

.

Что касается сокращения алгебраических дробей, имеющих дробные числовые коэффициенты в числителе и знаменателе, то можно поступать двояко: либо отдельно выполнять деление этих дробных коэффициентов, либо предварительно избавляться от дробных коэффициентов, умножив числитель и знаменатель на некоторое натуральное число. Про последнее преобразование мы говорили в статье приведение алгебраической дроби к новому знаменателю , его можно проводить в силу основного свойства алгебраической дроби. Разберемся с этим на примере.

Пример.

Выполните сокращение дроби .

Решение.

Можно сократить дробь следующим образом: .

А можно было предварительно избавиться от дробных коэффициентов, умножив числитель и знаменатель на знаменателей этих коэффициентов, то есть, на НОК(5, 10)=10 . В этом случае имеем .

Ответ:

.

Можно переходить к алгебраическим дробям общего вида, у которых в числителе и знаменателе могут быть как числа и одночлены, так и многочлены.

При сокращении таких дробей основная проблема заключается в том, что общий множитель числителя и знаменателя далеко не всегда виден. Более того, он не всегда существует. Для того, чтобы найти общий множитель или убедиться в его отсутствии нужно числитель и знаменатель алгебраической дроби разложить на множители.

Пример.

Сократите рациональную дробь .

Решение.

Для этого разложим на множители многочлены в числителе и знаменателе. Начнем с вынесения за скобки: . Очевидно, выражения в скобках можно преобразовать, используя

Другими словами, алгебраическая дробь - это деление двух многочленов, записанное с помощью дробной черты.

Любую алгебраическую дробь можно представить в виде выражения:

Примеры алгебраических дробей:

Сокращение алгебраических дробей

Основное свойство алгебраической дроби:

Если числитель и знаменатель алгебраической дроби умножить или разделить на один и тот же многочлен, то получится дробь, равная данной.

В виде буквенной формулы основное свойство алгебраической дроби можно записать так:

где c ≠0.

Используя основное свойство алгебраических дробей, выполняют их сокращение. Сокращение алгебраических дробей - это деление числителя и знаменателя дроби на их общий множитель.

Чтобы сократить алгебраическую дробь, надо числитель и знаменатель разложить на множители. Если числитель и знаменатель имеют общие множители, то дробь можно сократить. Если у числителя и знаменателя общих множителей нет, то дробь является несократимой.

Пример 1. Сократить дробь:

Пример 2. Упростить дробь:

Теперь стоит внимательно посмотреть на многочлены, заключённые в скобки:

a + b и b - a

Чтобы многочлен из знаменателя привести к тому же виду, что и у многочлена в числителе, надо поменять у многочлена b - a знак на противоположный и переставить члены местами:

b - a = -(-b + a ) = -(a - b )

Теперь и в числителе и в знаменателе у нас есть общий множитель, который можно сократить:

3(a + b ) = 3(a + b ) = - 3
x (b - a ) -x (a + b ) x

Пример 3. Сократите дробь:

24ab 3 c 5
16a 5 b 3 c

Решение: числитель и знаменатель дроби являются одночленами. Каждый одночлен - это произведение, состоящее из множителей, значит, можно сразу переходит к сокращению:

  • Начинаем с числового множителя. Числовые множители можно сократить на их наибольший общий делитель . Для чисел 24 и 16 - это число 8. После сокращения от 24 останется 3, а от 16 - 2.
  • Буквенные множители сокращаем на степень с наименьшим встречающимся показателем:
    • a и a 5 сокращаем на a . Единицу в числитель не пишем, а в знаменателе остаётся a 4 .
    • b 3 и b 3 сокращаем на b 3 , единицы в результат не записываем.
    • c 5 и c сокращаем на c , в числитель пишем c 4 , в знаменатель не пишем ничего.

Следовательно:

24ab 3 c 5 = 3c 4
16a 5 b 3 c 2a 4

Из курса алгебры школьной программы переходим к конкретике. В этой статье мы подробно изучим особый вид рациональных выражений – рациональные дроби , а также разберем, какие характерные тождественные преобразования рациональных дробей имеют место.

Сразу отметим, что рациональные дроби в том смысле, в котором мы их определим ниже, в некоторых учебниках алгебры называют алгебраическими дробями. То есть, в этой статье мы под рациональными и алгебраическими дробями будем понимать одно и то же.

По обыкновению начнем с определения и примеров. Дальше поговорим про приведение рациональной дроби к новому знаменателю и о перемене знаков у членов дроби. После этого разберем, как выполняется сокращение дробей. Наконец, остановимся на представлении рациональной дроби в виде суммы нескольких дробей. Всю информацию будем снабжать примерами с подробными описаниями решений.

Навигация по странице.

Определение и примеры рациональных дробей

Рациональные дроби изучаются на уроках алгебры в 8 классе. Мы будем использовать определение рациональной дроби, которое дается в учебнике алгебры для 8 классов Ю. Н. Макарычева и др.

В данном определении не уточняется, должны ли многочлены в числителе и знаменателе рациональной дроби быть многочленами стандартного вида или нет. Поэтому, будем считать, что в записях рациональных дробей могут содержаться как многочлены стандартного вида, так и не стандартного.

Приведем несколько примеров рациональных дробей . Так , x/8 и - рациональные дроби. А дроби и не подходят под озвученное определение рациональной дроби, так как в первой из них в числителе стоит не многочлен, а во второй и в числителе и в знаменателе находятся выражения, не являющиеся многочленами.

Преобразование числителя и знаменателя рациональной дроби

Числитель и знаменатель любой дроби представляют собой самодостаточные математические выражения, в случае рациональных дробей – это многочлены, в частном случае – одночлены и числа. Поэтому, с числителем и знаменателем рациональной дроби, как и с любым выражением, можно проводить тождественные преобразования. Иными словами, выражение в числителе рациональной дроби можно заменять тождественно равным ему выражением, как и знаменатель.

В числителе и знаменателе рациональной дроби можно выполнять тождественные преобразования . Например, в числителе можно провести группировку и приведение подобных слагаемых, а в знаменателе – произведение нескольких чисел заменить его значением. А так как числитель и знаменатель рациональной дроби есть многочлены, то с ними можно выполнять и характерные для многочленов преобразования, например, приведение к стандартному виду или представление в виде произведения.

Для наглядности рассмотрим решения нескольких примеров.

Пример.

Преобразуйте рациональную дробь так, чтобы в числителе оказался многочлен стандартного вида, а в знаменателе – произведение многочленов.

Решение.

Приведение рациональных дробей к новому знаменателю в основном применяется при сложении и вычитании рациональных дробей .

Изменение знаков перед дробью, а также в ее числителе и знаменателе

Основное свойство дроби можно использовать для смены знаков у членов дроби. Действительно, умножение числителя и знаменателя рациональной дроби на -1 равносильно смене их знаков, а в результате получится дробь, тождественно равная данной. К такому преобразованию приходится достаточно часто обращаться при работе с рациональными дробями.

Таким образом, если одновременно изменить знаки у числителя и знаменателя дроби, то получится дробь, равная исходной. Этому утверждению отвечает равенство .

Приведем пример. Рациональную дробь можно заменить тождественно равной ей дробью с измененными знаками числителя и знаменателя вида .

С дробями можно провести еще одно тождественное преобразование, при котором меняется знак либо в числителе, либо в знаменателе. Озвучим соответствующее правило. Если заменить знак дроби вместе со знаком числителя или знаменателя, то получится дробь, тождественно равная исходной. Записанному утверждению соответствуют равенства и .

Доказать эти равенства не составляет труда. В основе доказательства лежат свойства умножения чисел. Докажем первое из них: . С помощью аналогичных преобразований доказывается и равенство .

Например, дробь можно заменить выражением или .

В заключение этого пункта приведем еще два полезных равенства и . То есть, если изменить знак только у числителя или только у знаменателя, то дробь изменит свой знак. Например, и .

Рассмотренные преобразования, позволяющие изменять знак у членов дроби, часто применяются при преобразовании дробно рациональных выражений.

Сокращение рациональных дробей

В основе следующего преобразования рациональных дробей, имеющего название сокращение рациональных дробей, лежит все тоже основное свойство дроби. Этому преобразованию соответствует равенство , где a , b и c – некоторые многочлены, причем b и c - ненулевые.

Из приведенного равенства становится понятно, что сокращение рациональной дроби подразумевает избавление от общего множителя в ее числителе и знаменателе.

Пример.

Сократите рациональную дробь .

Решение.

Сразу виден общий множитель 2 , выполним сокращение на него (при записи общие множители, на которые сокращают, удобно зачеркивать). Имеем . Так как x 2 =x·x и y 7 =y 3 ·y 4 (при необходимости смотрите ), то понятно, что x является общим множителем числителя и знаменателя полученной дроби, как и y 3 . Проведем сокращение на эти множители: . На этом сокращение завершено.

Выше мы выполняли сокращение рациональной дроби последовательно. А можно было выполнить сокращение в один шаг, сразу сократив дробь на 2·x·y 3 . В этом случае решение выглядело бы так: .

Ответ:

.

При сокращении рациональных дробей основная проблема заключается в том, что общий множитель числителя и знаменателя далеко не всегда виден. Более того, он не всегда существует. Для того, чтобы найти общий множитель или убедиться в его отсутствии нужно числитель и знаменатель рациональной дроби разложить на множители. Если общего множителя нет, то исходная рациональная дробь не нуждается в сокращении, в противном случае – проводится сокращение.

В процессе сокращения рациональных дробей могут возникать различные нюансы. Основные тонкости на примерах и в деталях разобраны в статье сокращение алгебраических дробей .

Завершая разговор о сокращении рациональных дробей, отметим, что это преобразование является тождественным, а основная сложность в его проведении заключается в разложении на множители многочленов в числителе и знаменателе.

Представление рациональной дроби в виде суммы дробей

Достаточно специфическим, но в некоторых случаях очень полезным, оказывается преобразование рациональной дроби, заключающееся в ее представлении в виде суммы нескольких дробей, либо сумме целого выражения и дроби.

Рациональную дробь, в числителе которой находится многочлен, представляющий собой сумму нескольких одночленов, всегда можно записать как сумму дробей с одинаковыми знаменателями, в числителях которых находятся соответствующие одночлены. Например, . Такое представление объясняется правилом сложения и вычитания алгебраических дробей с одинаковыми знаменателями .

Вообще, любую рациональную дробь можно представить в виде суммы дробей множеством различных способов. Например, дробь a/b можно представить как сумму двух дробей – произвольной дроби c/d и дроби, равной разности дробей a/b и c/d . Это утверждение справедливо, так как имеет место равенство . К примеру, рациональную дробь можно представить в виде суммы дробей различными способами: Представим исходную дробь в виде суммы целого выражения и дроби. Выполнив деление числителя на знаменатель столбиком, мы получим равенство . Значение выражение n 3 +4 при любом целом n является целым числом. А значение дроби является целым числом тогда и только тогда, когда ее знаменатель равен 1 , −1 , 3 или −3 . Этим значениям отвечают значения n=3 , n=1 , n=5 и n=−1 соответственно.

Ответ:

−1 , 1 , 3 , 5 .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 13-е изд., испр. - М.: Мнемозина, 2009. - 160 с.: ил. ISBN 978-5-346-01198-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Уравнения, содержащие переменную в знаменателе можно решать двумя способами:

    Приведя дроби к общему знаменателю

    Используя основное свойство пропорции

Вне зависимости от выбранного способа необходимо после нахождения корней уравнения выбрать из найденных допустимые значения, т.е те, которые не обращают знаменатель в $0$.

1 способ. Приведение дробей к общему знаменателю.

Пример 1

$\frac{2x+3}{2x-1}=\frac{x-5}{x+3}$

Решение:

1.Перенесем дробь из правой части уравнения в левую

\[\frac{2x+3}{2x-1}-\frac{x-5}{x+3}=0\]

Для того чтобы правильно это сделать, вспомним, что при перенесении элементов в другую часть уравнения меняется знак перед выражениями на противоположный. Значит, если в правой части перед дробью был знак «+», то в левой перед ней будет знак «-».Тогда в левой части получим разность дробей.

2.Теперь отметим что у дробей разные знаменатели, значит для того, чтобы составить разность необходимо привести дроби к общему знаменателю. Общим знаменателем будет произведение многочленов, стоящих в знаменателях исходных дробей: $(2x-1)(x+3)$

Для того чтобы получить тождественное выражение, числитель и знаменатель первой дроби необходимо умножить на многочлен $(x+3)$, а второй на многочлен $(2x-1)$.

\[\frac{(2x+3)(х+3)}{(2x-1)(х+3)}-\frac{(x-5)(2х-1)}{(x+3)(2х-1)}=0\]

Выполним преобразование в числителе первой дроби-произведем умножение многочленов. Вспомним, что для этого необходимо умножить первое слагаемое первого многочлена умножить на каждое слагаемое второго многочлена, затем второе слагаемое первого многочлена умножить на каждое слагаемое второго многочлена и результаты сложить

\[\left(2x+3\right)\left(х+3\right)=2х\cdot х+2х\cdot 3+3\cdot х+3\cdot 3={2х}^2+6х+3х+9\]

Приведем подобные слагаемые в полученном выражении

\[\left(2x+3\right)\left(х+3\right)=2х\cdot х+2х\cdot 3+3\cdot х+3\cdot 3={2х}^2+6х+3х+9=\] \[{=2х}^2+9х+9\]

Выполним аналогично преобразование в числителе второй дроби-произведем умножение многочленов

$\left(x-5\right)\left(2х-1\right)=х\cdot 2х-х\cdot 1-5\cdot 2х+5\cdot 1={2х}^2-х-10х+5={2х}^2-11х+5$

Тогда уравнение примет вид:

\[\frac{{2х}^2+9х+9}{(2x-1)(х+3)}-\frac{{2х}^2-11х+5}{(x+3)(2х-1)}=0\]

Теперь дроби с одинаковым знаменателем, значит можно производить вычитание. Вспомним, что при вычитании дробей с одинаковым знаменателем из числителя первой дроби необходимо вычесть числитель второй дроби, знаменатель оставить прежним

\[\frac{{2х}^2+9х+9-({2х}^2-11х+5)}{(2x-1)(х+3)}=0\]

Преобразуем выражение в числителе. Для того, чтобы раскрыть скобки, перед которыми стоит знак «-» надо изменить все знаки перед слагаемыми, стоящими в скобках на противоположные

\[{2х}^2+9х+9-\left({2х}^2-11х+5\right)={2х}^2+9х+9-{2х}^2+11х-5\]

Приведем подобные слагаемые

${2х}^2+9х+9-\left({2х}^2-11х+5\right)={2х}^2+9х+9-{2х}^2+11х-5=20х+4$

Тогда дробь примет вид

\[\frac{{\rm 20х+4}}{(2x-1)(х+3)}=0\]

3.Дробь равна $0$, если ее числитель равен 0. Поэтому мы приравниваем числитель дроби к $0$.

\[{\rm 20х+4=0}\]

Решим линейное уравнение:

4.Проведем выборку корней. Это значит, что необходимо проверить, не обращаются ли знаменатели исходных дробей в $0$ при найденных корнях.

Поставим условие, что знаменатели не равны $0$

х$\ne 0,5$ х$\ne -3$

Значит допустимы все значения переменных, кроме $-3$ и $0,5$.

Найденный нами корень является допустимым значением, значит его смело можно считать корнем уравнения. Если бы найденный корень был бы не допустимым значением, то такой корень был бы посторонним и,конечно, не был бы включен в ответ.

Ответ: $-0,2.$

Теперь можем составить алгоритм решения уравнения, которое содержит переменную в знаменателе

Алгоритм решения уравнения, которое содержит переменную в знаменателе

    Перенести все элементы из правой части уравнения в левую. Для получения тождественного уравнения необходимо изменить все знаки, стоящие перед выражениями в правой части на противоположные

    Если в левой части мы получим выражение с разными знаменателями, то приводим их к общему, используя основное свойство дроби. Выполнить преобразования, используя тождественные преобразования и получить итоговую дробь равную $0$.

    Приравнять числитель к $0$ и найти корни получившегося уравнения.

    Проведем выборку корней, т.е. найти допустимые значения переменных, которые не обращают знаменатель в $0$.

2 способ. Используем основное свойство пропорции

Основным свойством пропорции является то, что произведение крайних членов пропорции равно произведению средних членов.

Пример 2

Используем данное свойство для решения этого задания

\[\frac{2x+3}{2x-1}=\frac{x-5}{x+3}\]

1.Найдем и приравняем произведение крайних и средних членов пропорции.

$\left(2x+3\right)\cdot(\ x+3)=\left(x-5\right)\cdot(2x-1)$

\[{2х}^2+3х+6х+9={2х}^2-10х-х+5\]

Решив полученное уравнение, мы найдем корни исходного

2.Найдем допустимые значения переменной.

Из предыдущего решения (1 способ) мы уже нашли, что допустимы любые значения, кроме $-3$ и $0,5$.

Тогда, установив что найденный корень является допустимым значением, мы выяснили, что $-0,2$ будет являться корнем.

Когда ученик переходит в старшую школу, математика разделяется на 2 предмета: алгебру и геометрию. Понятий становится все больше, задания все сложнее. У некоторых возникают трудности с восприятием дробей. Пропустили первый урок по этой теме, и вуаля. дроби? Вопрос, который будет мучить на протяжении всей школьной жизни.

Понятие алгебраической дроби

Начнем с определения. Под алгебраической дробью понимается выражения P/Q, где P является числителем, а Q - знаменателем. Под буквенной записью может скрываться число, числовое выражение, численно-буквенное выражение.

Прежде чем задаваться вопросом, как решать алгебраические дроби, для начала нужно понимать, что подобное выражение - часть целого.

Как правило, целое - это 1. Число в знаменателе показывает, на сколько частей разделили единицу. Числитель необходим для того, чтобы узнать, сколько элементов взято. Дробная черта соответствует знаку деления. Допускается запись дробного выражения в качестве математической операции «Деление». В таком случае числитель - делимое, знаменатель - делитель.

Основное правило обыкновенных дробей

Когда учащиеся проходят данную тему в школе, им дают примеры на закрепление. Чтобы правильно их решать и находить различные пути из сложных ситуаций, нужно применять основное свойство дробей.

Оно звучит так: Если умножить и числитель, и знаменатель на одно и то же число или выражение (отличные от нуля), то значение обыкновенной дроби не изменится. Частным случаем от данного правила является разделение обеих частей выражения на одно и то же число или многочлен. Подобные преобразования называются тождественными равенствами.

Ниже будет рассмотрено, как решать сложение и вычитание алгебраических дробей, производить умножение, деление и сокращение дробей.

Математические операции с дробями

Рассмотрим, как решать, основное свойство алгебраической дроби, как применять его на практике. Если нужно перемножить две дроби, сложить их, разделить одну на другую или произвести вычитание, нужно всегда придерживаться правил.

Так, для операции сложения и вычитания следует найти дополнительный множитель, чтобы привести выражения к общему знаменателю. Если изначально дроби даны с одинаковыми выражениями Q, то нужно опустить этот пункт. Когда общий знаменатель найден, как решать алгебраические дроби? Нужно сложить или вычесть числители. Но! Нужно помнить, что при наличии знака «-» перед дробью все знаки в числителе меняются на противоположные. Иногда не следует производить каких-либо подстановок и математических операций. Достаточно поменять знак перед дробью.

Часто используется такое понятие, как сокращение дробей . Это означает следующее: если числитель и знаменатель разделить на отличное от единицы выражение (одинаковое для обеих частей), то получается новая дробь. Делимое и делитель меньше прежних, но в силу основного правила дробей остаются равными изначальному примеру.

Целью этой операции является получение нового несократимого выражения. Решить данную задачу можно, если сократить числитель и знаменатель на наибольший общий делитель. Алгоритм операции состоит из двух пунктов:

  1. Нахождение НОД для обеих частей дроби.
  2. Деление числителя и знаменателя на найденное выражение и получение несократимой дроби, равной предшествующей.

Ниже показана таблица, в которой расписаны формулы. Для удобства ее можно распечатать и носить с собой в тетради. Однако, чтобы в будущем при решении контрольной или экзамена не возникло трудностей в вопросе, как решать алгебраические дроби, указанные формулы нужно выучить наизусть.

Несколько примеров с решениями

С теоретической точки зрения рассмотрен вопрос, как решать алгебраические дроби. Примеры, приведенные в статье, помогут лучше усвоить материал.

1. Преобразовать дроби и привести их к общему знаменателю.

2. Преобразовать дроби и привести их к общему знаменателю.

После изучения теоретической части и расссмотрения практической вопросов больше возникнуть не должно.