Основное тригонометрическая тоже детства. Тригонометрические тождества

Это последний и самый главный урок, необходимый для решения задач B11. Мы уже знаем, как переводить углы из радианной меры в градусную (см. урок «Радианная и градусная мера угла »), а также умеем определять знак тригонометрической функции, ориентируясь по координатным четвертям (см. урок «Знаки тригонометрических функций »).

Дело осталось за малым: вычислить значение самой функции - то самое число, которое записывается в ответ. Здесь на помощь приходит основное тригонометрическое тождество.

Основное тригонометрическое тождество. Для любого угла α верно утверждение:

sin 2 α + cos 2 α = 1.

Эта формула связывает синус и косинус одного угла. Теперь, зная синус, мы легко найдем косинус - и наоборот. Достаточно извлечь квадратный корень:

Обратите внимание на знак «±» перед корнями. Дело в том, что из основного тригонометрического тождества непонятно, каким был исходный синус и косинус: положительным или отрицательным. Ведь возведение в квадрат - четная функция, которая «сжигает» все минусы (если они были).

Именно поэтому во всех задачах B11, которые встречаются в ЕГЭ по математике, обязательно есть дополнительные условия, которые помогают избавиться от неопределенности со знаками. Обычно это указание на координатную четверть, по которой можно определить знак.

Внимательный читатель наверняка спросит: «А как быть с тангенсом и котангенсом?» Напрямую вычислить эти функции из приведенных выше формул нельзя. Однако существуют важные следствия из основного тригонометрического тождества, которые уже содержат тангенсы и котангенсы. А именно:

Важное следствие: для любого угла α можно переписать основное тригонометрическое тождество следующим образом:

Эти уравнения легко выводятся из основного тождества - достаточно разделить обе стороны на cos 2 α (для получения тангенса) или на sin 2 α (для котангенса).

Рассмотрим все это на конкретных примерах. Ниже приведены настоящие задачи B11, которые взяты из пробных вариантов ЕГЭ по математике 2012.

Нам известен косинус, но неизвестен синус. Основное тригонометрическое тождество (в «чистом» виде) связывает как раз эти функции, поэтому будем работать с ним. Имеем:

sin 2 α + cos 2 α = 1 ⇒ sin 2 α + 99/100 = 1 ⇒ sin 2 α = 1/100 ⇒ sin α = ±1/10 = ±0,1.

Для решения задачи осталось найти знак синуса. Поскольку угол α ∈ (π /2; π ), то в градусной мере это записывается так: α ∈ (90°; 180°).

Следовательно, угол α лежит во II координатной четверти - все синусы там положительны. Поэтому sin α = 0,1.

Итак, нам известен синус, а надо найти косинус. Обе эти функции есть в основном тригонометрическом тождестве. Подставляем:

sin 2 α + cos 2 α = 1 ⇒ 3/4 + cos 2 α = 1 ⇒ cos 2 α = 1/4 ⇒ cos α = ±1/2 = ±0,5.

Осталось разобраться со знаком перед дробью. Что выбрать: плюс или минус? По условию, угол α принадлежит промежутку (π 3π /2). Переведем углы из радианной меры в градусную - получим: α ∈ (180°; 270°).

Очевидно, это III координатная четверть, где все косинусы отрицательны. Поэтому cos α = −0,5.

Задача. Найдите tg α , если известно следующее:

Тангенс и косинус связаны уравнением, следующим из основного тригонометрического тождества:

Получаем: tg α = ±3. Знак тангенса определяем по углу α . Известно, что α ∈ (3π /2; 2π ). Переведем углы из радианной меры в градусную - получим α ∈ (270°; 360°).

Очевидно, это IV координатная четверть, где все тангенсы отрицательны. Поэтому tg α = −3.

Задача. Найдите cos α , если известно следующее:

Снова известен синус и неизвестен косинус. Запишем основное тригонометрическое тождество:

sin 2 α + cos 2 α = 1 ⇒ 0,64 + cos 2 α = 1 ⇒ cos 2 α = 0,36 ⇒ cos α = ±0,6.

Знак определяем по углу. Имеем: α ∈ (3π /2; 2π ). Переведем углы из градусной меры в радианную: α ∈ (270°; 360°) - это IV координатная четверть, косинусы там положительны. Следовательно, cos α = 0,6.

Задача. Найдите sin α , если известно следующее:

Запишем формулу, которая следует из основного тригонометрического тождества и напрямую связывает синус и котангенс:

Отсюда получаем, что sin 2 α = 1/25, т.е. sin α = ±1/5 = ±0,2. Известно, что угол α ∈ (0; π /2). В градусной мере это записывается так: α ∈ (0°; 90°) - I координатная четверть.

Итак, угол находится в I координатной четверти - все тригонометрические функции там положительны, поэтому sin α = 0,2.

Тригонометрические тождества - это равенства, которые устанавливают связь между синусом, косинусом, тангенсом и котангенсом одного угла, которая позволяет находить любую из данных функций при условии, что будет известна какая-либо другая.

\[ \sin^{2}\alpha + \cos^{2} \alpha = 1 \]

\[ tg \alpha = \dfrac{\sin \alpha}{\cos \alpha}, \enspace ctg \alpha = \dfrac{\cos \alpha}{\sin \alpha} \]

\[ tg \alpha \cdot ctg \alpha = 1 \]

Зависимость между синусом и косинусом

\[ \sin^{2} \alpha+\cos^{2} \alpha=1 \]

Данное тождество говорит о том, что сумма квадрата синуса одного угла и квадрата косинуса одного угла равна единице, что на практике дает возможность вычислить синус одного угла, когда известен его косинус и наоборот.

При преобразовании тригонометрических выражений очень часто используют данное тождество, которое позволяет заменять единицей сумму квадратов косинуса и синуса одного угла и также производить операцию замены в обратном порядке.

Нахождение тангенса и котангенса через синус и косинус

\[ tg \alpha = \dfrac{\sin \alpha}{\cos \alpha},\enspace ctg \alpha=\dfrac{\cos \alpha}{\sin \alpha} \]

Данные тождества образуются из определений синуса, косинуса, тангенса и котангенса. Ведь если разобраться, то по определению ординатой \(\dfrac{y}{x}=\dfrac{\sin \alpha}{\cos \alpha} \) , а отношение \(\dfrac{x}{y}=\dfrac{\cos \alpha}{\sin \alpha} \) - будет являться котангенсом.

Добавим, что только для таких углов \(\alpha \) , при которых входящие в них тригонометрические функции имеют смысл, будут иметь место тождества , .

Например: \(tg \alpha = \dfrac{\sin \alpha}{\cos \alpha} \) является справедливой для углов \(\alpha \) , которые отличны от \(\dfrac{\pi}{2}+\pi z \) , а \(ctg \alpha=\dfrac{\cos \alpha}{\sin \alpha} \) - для угла \(\alpha \) , отличного от \(\pi z \) , \(z \) - является целым числом.

Зависимость между тангенсом и котангенсом

\[ tg \alpha \cdot ctg \alpha=1 \]

Данное тождество справедливо только для таких углов \(\alpha \) , которые отличны от \(\dfrac{\pi}{2} z \) . Иначе или котангенс или тангенс не будут определены.

Опираясь на вышеизложенные пункты, получаем, что \(tg \alpha = \dfrac{y}{x} \) , а \(ctg \alpha=\dfrac{x}{y} \) . Отсюда следует, что \(tg \alpha \cdot ctg \alpha = \dfrac{y}{x} \cdot \dfrac{x}{y}=1 \) . Таким образом, тангенс и котангенс одного угла, при котором они имеют смысл, являются взаимно обратными числами.

Зависимости между тангенсом и косинусом, котангенсом и синусом

\(tg^{2} \alpha + 1=\dfrac{1}{\cos^{2} \alpha} \) - сумма квадрата тангенса угла \(\alpha \) и \(\alpha \) , отличных от \(\dfrac{\pi}{2}+ \pi z \) .

\(1+ctg^{2} \alpha=\dfrac{1}{\sin^{2}\alpha} \) - сумма \(\alpha \) , равняется обратному квадрату синуса данного угла. Данное тождество справедливо для любого \(\alpha \) , отличного от \(\pi z \) .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

Универсальная тригонометрическая подстановка

Обзор основных формул тригонометрии завершаем формулами, выражающими тригонометрические функции через тангенс половинного угла. Такая замена получила название универсальной тригонометрической подстановки . Ее удобство заключается в том, что все тригонометрические функции выражаются через тангенс половинного угла рационально без корней.

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта , включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

    Запрос «sin» перенаправляется сюда; см. также другие значения. Запрос «sec» перенаправляется сюда; см. также другие значения. Запрос «Синус» перенаправляется сюда; см. также другие значения … Википедия

    Рис. 1 Графики тригонометрических функций: синуса, косинуса, тангенса, секанса, косеканса, котангенса Тригонометрические функции вид элементарных функций. Обычно к ним относят синус (sin x), косинус (cos x), тангенс (tg x), котангенс (ctg x),… … Википедия

    Рис. 1 Графики тригонометрических функций: синуса, косинуса, тангенса, секанса, косеканса, котангенса Тригонометрические функции вид элементарных функций. Обычно к ним относят синус (sin x), косинус (cos x), тангенс (tg x), котангенс (ctg x),… … Википедия

    Рис. 1 Графики тригонометрических функций: синуса, косинуса, тангенса, секанса, косеканса, котангенса Тригонометрические функции вид элементарных функций. Обычно к ним относят синус (sin x), косинус (cos x), тангенс (tg x), котангенс (ctg x),… … Википедия

    Рис. 1 Графики тригонометрических функций: синуса, косинуса, тангенса, секанса, косеканса, котангенса Тригонометрические функции вид элементарных функций. Обычно к ним относят синус (sin x), косинус (cos x), тангенс (tg x), котангенс (ctg x),… … Википедия

    Геодезические измерения (XVII век) … Википедия

    В тригонометрии, формула тангенса половинного угла связывает тангенс половинного угла с тригонометрическими функциями полного угла: Различные вариации этой формулы выглядят следующим образом … Википедия

    - (от греч. τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Данный термин впервые появился в 1595 г. как… … Википедия

    - (лат. solutio triangulorum) исторический термин, означающий решение главной тригонометрической задачи: по известным данным о треугольнике (стороны, углы и т. д.) найти остальные его характеристики. Треугольник может располагаться на… … Википедия

Книги

  • Комплект таблиц. Алгебра и начала анализа. 10 класс. 17 таблиц + методика , . Таблицы отпечатаны на плотном полиграфическом картоне размером 680 х 980 мм. В комплект входит брошюра с методическими рекомендациями для учителя. Учебный альбом из 17 листов.…
  • Таблицы интегралов и другие математические формулы , Г. Б. Двайт. Девятое издание известного справочника содержит весьма подробные таблицы неопределенных и определенных интегралов, а также большое число других математических формул: разложения в ряды,…

Примеры тождеств:

\(2(x+5)=2x+10\);
\(a^2-b^2=(a+b)(a-b)\);
\(1-\sin^2⁡x=\cos^2⁡x\).

А вот выражение \(\frac{x^2}{x}=x\) является тождеством только при условии \(x≠0\) (иначе левая часть не существует).

Как доказывать тождество?

Рецепт до одури прост:

Чтобы доказать тождество нужно доказать, что его правая и левая части равны, т.е. свести его к виду «выражение» = «такое же выражение».

Например,

\(5=5\);
\(\sin^2⁡x=\sin^2⁡x\);
\(\cos⁡x-4=\cos⁡x-4\).

Для того, чтоб это сделать можно:

  1. Преобразовывать только правую или только левую часть.
  2. Преобразовывать обе части одновременно.
  3. Использовать любые допустимые математические преобразования (например, приводить подобные; раскрывать скобки; переносить слагаемые из одной части в другую, меняя знак; умножать или делить левую и правую часть на одно и то же число или выражение, не равное нулю и т.д.).
  4. Использовать любые математические формулы.

Именно четвертый пункт при доказательстве тождеств используется чаще всего, поэтому все нужно знать, помнить и уметь использовать.

Пример . Доказать тригонометрическое тождество \(\sin⁡2x=2\sin⁡x\cdot \cos{x}\)
Решение :


Пример . Доказать, что выражение \(\frac {\cos^2{t}}{1-\sin⁡{t}}\) \(-\sin{⁡t}=1\) является тождеством.
Решение :

Пример . Доказать тригонометрическое тождество \(1-tg^2 t=\)\(\frac{\cos⁡2t}{\cos^2⁡t}\)
Решение :

\(1-tg^2 t=\)\(\frac{\cos⁡2t}{\cos^2⁡t}\)

Здесь будем преобразовывать только правую часть, стремясь свести ее к левой. Левую же оставляем неизменной. Вспоминаем .

\(1-tg^2 t=\)

Теперь сделаем почленное деление в дроби (т.е. применим в обратную сторону): \(\frac{a+c}{b}\) \(=\) \(\frac{a}{b}\) \(+\)\(\frac{c}{b}\)

\(1-tg^2 t=\)\(\frac{\cos^2⁡t}{\cos^2⁡t}\) \(-\)\(\frac{\sin^2⁡t}{\cos^2⁡t}\)

Первую дробь правой части сократим, а ко второй применим : \(\frac{a^n}{b^n}\) \(=\)\((\frac{a}{b})^n\) .

\(1-tg^2 t=1-\)\((\frac{\sin⁡t}{\cos⁡t})^2\)

Ну, а синус деленный на косинус равен того же угла:

\(\frac{\sin⁡x}{\cos⁡x}\) \(=tg x\)

\(1-tg^2 t=1-tg^2 t\)

Пример . Доказать тригонометрическое тождество \(=ctg(π+t)-1\)
Решение :

\(\frac{\cos⁡2t}{\sin⁡t\cdot\cos⁡t+\sin^2⁡t}\) \(=ctg(π+t)-1\)

Здесь будем преобразовывать обе части:
- в левой: преобразуем \(\cos⁡2t\) по формуле двойного угла;
- а в правой \(ctg(π+t)\) по .

\(\frac{\cos^2⁡t-\sin^2⁡t}{\sin⁡t\cdot\cos⁡t+\sin^2⁡t}\) \(=ctg\:t-1\)

Теперь работаем только с левой частью.
В числителе воспользуемся , в знаменателе за скобку синус.

\(\frac{(\cos⁡t-\sin{t})(\cos⁡t+\sin{t})}{\sin⁡t(\cos⁡t+\sin⁡{t})}\) \(=ctg\:t-1\)

Сократим дробь на \(\cos{⁡t}+\sin{⁡t}\).

\(\frac{\cos⁡t-\sin{t}}{\sin⁡t}\) \(=ctg\:t-1\)

Почленно разделим дробь, превратив ее в две отдельные дроби.

\(\frac{\cos⁡t}{\sin{t}}-\frac{\sin{t}}{\sin{t}}\) \(=ctg\:t-1\)

Первая дробь это , а вторая равна единице.

\(ctg\:t-1=ctg\:t-1\)

Левая часть равна правой, тождество доказано.

Как видите, все довольно несложно, но надо знать все формулы и свойства.

Как доказать основное тригонометрическое тождество

Два простых способа вывести формулу \(\sin^2x+\cos^2x=1\). Нужно знать только теорему Пифагора и определение синуса и косинуса.

Ответы на часто задаваемые вопросы:

Вопрос: Как определить, что в тождестве надо преобразовывать – левую часть, правую или обе вместе?
Ответ: Нет никакой разницы – в любом случае вы получите один и тот же результат. Например, в третьем примере мы легко могли бы получить из левой части \(1-tg^2 t\) правую \(\frac{cos⁡2t}{cos^2⁡t}\) (попробуйте сделать это сами). Или преобразовывать обе, с тем чтоб они «встретились посередине», где-то в районе \(\frac{\cos^2⁡t-\sin^2⁡t}{\cos^2⁡t}\) \(=\)\(\frac{\cos^2⁡t-\sin^2⁡t}{\cos^2⁡t}\) . Поэтому вы можете доказывать любым удобным вам способом. Какую «тропинку» видите – по той и идите. Главное только – преобразовывайте «законно», то есть понимайте на основании какого свойства, правила или формулы вы делаете очередное преобразование.